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Graph generation tasks

Task 1: Realistic graph generation

* Generate graphs that are similar to a given set of graphs
* Auto-regressive Models

* Variational Autoencoders (VAES)

* Generative Adversarial Networks (GANS)

[ask 2: Goal-oriented graph generation
* Generate graphs that optimize given objectives [Focus of this paper]
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What can they do?

v'Produce optimal graphs for some given goals in practical applications
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Current methods

v'VAE/GAN + RL (Guimaraes et al. 2017; Baker et al. 2017; Zoph et al. 2018; Cao and Kipf 2018:
Bojchevski et al. 2018; You et al. 2018; Zhavoronkov et al. 2019; Jin, Barzilay, and Jaakkola 2020a)

* 5K evaluated molecules (Guimaraes et al. 2017; Cao and Kipf 2018)
o 128K trained nets (Zoph et al. 2018)

v Graph-to-graph translation (Jin et al. 2019; Jin, Barzilay, and Jaakkola 2020b)
* 34K~99K evaluated molecular pairs (Jin et al. 2019)

v’ Continuous optimization over latent space (Gomez-Bombarelli et al. 2018; Kusner, Paige, and
Hernandez-Lobato 2017; Dai et al. 2018; Qi et al. 2018; Jin, Barzilay, and Jaakkola 2018; Samanta et al.
2019; Zhang et al. 2019; Luo et al. 2018)

* high-dimensional nature of the continuous latent space, e.q.,196 dimensions
* 3K~90K evaluated molecules (Jin, Barzilay, and Jaakkola 2018; Samanta et al. 2019)
* 1K~5K trained neural architectures (Luo et al. 2018; Zhang et al. 2019)

v’ Bayesian optimization over graph space (Ramachandram et al. 2018; Kandasamy et al. 2018; Jin,
Song, and Hu 2019)

* hand-crafted kernels for specific applications

Overall, current models still need many evaluations.




Graph evaluations are usually so expensive!

v'computation resource, time, money, energy, and environment.

* When evaluating the classification performance of a single deep VGG
network, the training phase on a system equipped with four NVIDIA Titan
Black GPUs takes 2~3 weeks (Simonyan and Zisserman 2015).

@ Carbon emission estimation model (Strubell, Ganesh, and McCallum 2019)

* CO, emission has reached 506~760 lbs, which is roughly equivalent to a
round trip by a car from Los Angeles to Las VVegas.

* To evaluate the chemical properties of a single 9 heavy atom molecule
via an expensive density functional theory (DFT) calculation on a single-
core processor takes around one hour (Gilmer et al. 2017).



Qur goal

To generate the optimal graphs at
as low cost as possible

Main idea: Bring the advantage of Bayesian optimization to the
goal-oriented graph generation task



Proposed framework: Cost-Aware Graph Generation (CAGG)
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Representation of graphs

* A graph G with d, node types and d,, edge types as consisting of four tuples (V, E,
X, Y), where V is a set of nodes, ES(VXV) is a set of edges, and X € RIVIX(1+dx) g4
v € RIEX(1+4y) gre the attribute matrices of all nodes and edges.

The attribute matrix of The attribute matrix of
nodes (X) edges (Y)

d, node types d, edge types

..
[1%4d,

whether the node
exists (0) or not (1)

Ul +d,,
whether the edge
exists (0) or not (1)




Surrogate model

v'Should avoid the hand-crafted kernel

v'Should have the ability to approach f under a small number of evaluations
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Bayesian graph neural network



Surrogate model

v'To test the surrogate in a small sample setting
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Figure S1: Visualization of predictions of the proposed sur-
rogate model on 20 test samples randomly extracted from
the QM9 dataset (Ramakrishnan et al. 2014). Black crosses

denote the groundtruth and blue dots with error bars denote
the predictions with a 95% confidence interval.

Surrogates logP—SA SxXQED—-SA
GNN-BLR -1.7524-2.283 -3.806+3.088
Surrogate of the CAGG -1.0861-0.069 -1.004+0.027

Table S1: Predictive performance with 20-fold cross valida-
tion of the surrogate model (GNN-BLR) proposed in DGBO
(Cui, Yang, and Hu 2019) and our surrogate model, mea-
sured by log-likelihood (larger is better).

Good predictions and ranking

Better predictive performance
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v A two-phase training strategy
Generathn mOdel * The first phase Is an unsupervised pre-training

We pre-train it on some graphs (e.g. 1,000) in a VAE
framework by combining an encoder.

(1+dx)+{\/x(1+dy)
"1+d, 1+d,1+d, 1+d, * The second phase is to learn the pre-trained model
[I [- -~ HE. . EEN.-.H H i]} towards the given objectives.
G’ s L - R | |
B meomEe - Original objective: Non-differentiable and costly
Reshaping
r Multi-layer SOftmaX l & Softmax o
deconvolutional neural net . (;b — &rg maX I' G ] —I_ Z A’I, C; (ﬁb) )

i  Constraints

Nodes 1 + d 1 i.p“dy Edges ‘ ‘
The probability template ¢ = ( V', &, X 7) = = Zl—l [H,(G) SE ela(G)] and/ G )= 9é (1)

V

Cheap and differentiable objective:

¢ = arg max Erao,1) 2]+ Xici(e),



Generation model

v' Can good graphs be generated?

Both phases contribute to reducing costs.
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Table S2: An ablation study on the two-phase training strat-
egy in the generation model. CAGG w/o Pre means a vari-
ant without unsupervised VAE pre-training; that is, it does
not execute the lines 1-2 of Algorithm 1 in the main text.
CAGG w/o GO means a variant without goal-oriented train-
ing while generating search space; that 1s, it does not execute
the line 6 of Algorithm 1 in the main text (i.e., g¢ 1S always
the same as the pre-trained g,,;). # Eval means the num-
ber of evaluations to find the optimum. CSP means the Cost
Saving Percentage of our framework over other variants.
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Acquisition function

v Expected Improvement (El)

+ 00
(G) = / (z — 24 )p(z | D, G)dz.

Z+

v Choose a graph G’ to evaluate from the search space by

G = Q).
arg max v(G)



Experiments

v'Representative and state-of-the-art baselines
v'Same hardware environment equipped with a
four-core Intel i5 processor

Methods

Key technology

Gentrl (Zhavoronkov et al, 2019)

GCPN (You et al, 2018)
JTVAEBO (Jin et al, 2018)

G2G (Jin et al, 2019a)

DGBO (Cui et al, 2019)

VAE+RL
RL

Continuous optimization
over latent space
Graph-to-graph
translation

Search algorithm from a
given fixed search space

Molecular discovery

Top-3 methods in NASBench201 benchmark (Dong and Yang 2020)

Methods

Key technology

ResNet (He et al. 2016)

RS (Bergstra and Bengio 2012)

REA (Real et al. 2019)
REINFORCE (Williams 1992)

Hand-crafted architecture
Random search

Evolution search

Cell-based neural architecture search

Methods

Key technology

RAND (Kandasamy et al. 2018)
TreeBO (Jenatton et al. 2017)
NASBOT (Kandasamy et al. 2018)
Auto-Keras (Jin, Song, and Hu 2019)

NASGBO (Ma, Cui, and Yang 2019)

Random select
Bayesian optimization
Bayesian optimization

Bayesian optimization

It is built on DGBO to
handle NAS task

Multi-branch neural architecture search
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v" Our method finds the comparable or optimal solution
v" Our method reduces the evaluation cost significantly
(30%-95%).

Experiments

Methods Total cost  CIFAR100  ImageNet16-120
ResNet N/A 70.86 43.63
RS 205 hours  72.48+1.04 46.04+0.46
REINFORCE 205 hours  72.48+0.31 45.85+0.51
REA 205 hours  73.09+0.25 46.12+0.67
50.3 hours  72.87+0.27 46.130.46
CAGG (ours) 1409 hours  73.2540.42 46.34+0.27
201.5 hours  73.38+0.16 46.37+£0.24

Table 2: Comparison of cost and classification accuracy with
baselines for cell-based NAS. The total cost includes the al-
gorithm execution time and evaluation costs. The evaluation
cost per architecture is assigned to half an hour, which is es-
timated based on the running time on a personal computer.
The last two columns show the test classification accuracy
(%). All methods ran five times to eliminate random effects.
We set the budget to 205 hours for all baselines and report
the results found by the CAGG under various total costs.

. ) ] Algorithm cost  Evaluation Total cost

Goals Methods #Eval (hours)  cost (hours) Hours COsxe (Ibs) Google Cloud Platform Csp
Gentrl 3,000 4.3 3,000 3,004.3 412.1  US$1,254.6~US$1616.3 | 95.70%
GCPN 3,000 0.2 3,000  3,000.2 411.5 US$1,252.9~US$1614.1 | 95.69%

logP—SA JTVAEBO 3,000 225 3,000 3,022.5 414.6  US$1,262.2~US$1626.1 | 95.73%
G2G 1,600 2.8 1,600  1602.8 219.8 US$669.3~US$862.3 | 91.94%
DGBO 189 0.3 189 189.3 26.0 US$79.1~US$101.8 | 31.75%
CAGG (ours) 128 1.2 128 129.2 17.7 US$54.0~US$69.6 N/A
Gentrl 3,000 4.3 3,000 3,004.3 412.1 US$1,254.6~US$1616.3 | 95.16%
GCPN 3,000 0.2 3,000 3,000.2 411.5 US$1,252.9~US§1614.1 | 95.16%

5%QED—SA JTVAEBO 1,550 21.5 1,550 1,571.5 215.6 US$656.3~US$845.5 | 90.75%
G2G 1,600 2.8 1,600  1602.8 219.8 US$669.3~US$862.3 | 90.93%
DGBO 448 1.0 448 449.0 61.6 US$187.5~US$241.6 | 67.64%
CAGG (ours) 144 1.3 144 145.3 19.9 US$60.7~US$78.2 N/A

Table 1: Comparison of cost with molecular discovery methods. # Eval means the number of evaluations to find the optimal
solution (lower is better). We set the maximum # Eval to 3,000. Algorithm cost represents the algorithm execution time, where
the Gentrl, JTVAEBO, and CAGG contain the running time in pre-training and designing, the G2G only includes the training
time, and both the DGBO and GCPN include only running time in searching or designing, because they do not require pre-
training. Evaluation cost represents the cost of evaluating molecules, which is calculated based on # Eval and an hour for DFT
calculation per molecular evaluation (Gilmer et al. 2017) COqe is the estimated CO5 emission, which is calculated based on
the carbon emission estimation model (Strubell, Gar st s )

on the price of on-demand c2-standard-8 instances.|JCSP means the Cost Saving Percentage of the CAGG over other baselines.

Methods Total cost Indoor Slice
RAND 12 hours 0.15640.023 0.93240.044
TreeBO 12 hours 0.1684+0.023 0.7594+0.079
NASBOT 12 hours 0.114+0.009 0.6154+0.044
Auto-Keras 12 hours 0.112+0.010 0.8704+0.054
NASGBO 12 hours 0.090+0.012 0.560+0.046
4 hours 0.072=0.005 0.7860.003

CAGG (ours) 8 hours 0.066+0.002 0.625+0.001
12 hours 0.06310.001 0.43340.010

Cell-based neural architecture search

Molecular discovery

Table 3: Comparison of cost and the test regression mean
squared error (lower is better) with baselines for multi-
branch NAS. We set the budget to 12 hours and report the
results found by the CAGG under 4, 8, and 12 hours.

Multi-branch neural architecture search
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Limitations and future work

* How to relax the limit of the pre-fixed maximum number of nodes when
generating graphs

* How to Introduce the cost difference between graphs to further reduce
the cost

* Handling other complex generative tasks and multi-objective situation
are also promising extensions
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