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Motivation

* (Goal-oriented graph generation models can produce optimal graphs for given objectives, beyond e Generation model
learning the distribution of an existing dataset. They can help many practical and challenging
applications, such as discovering the molecules with the best drug characteristics and designing
neural architectures with the excellent performance.

v Produce desirable graphs as candidates.

v Constrain the search space to contain more good graphs, so as to avoid unnecessary evaluations.

. . We use a multi-layer deconvolutional net as generation model and design a two-phase training strate
* Current models still need many evaluations. Y g g P g gy

* Graph evaluations are usually very expensive in terms of computation resource, time, money,
energy, and environment.
* Such these high costs will become a bottleneck in practical applications. @ The first phase is an unsupervised pre-training

We pre-train it on some graphs (e.g. 1,000) in a VAE
framework by combining an encoder.

» A two-phase training strategy
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* Goal: to generate the optimal graphs at as low cost as possible. NE.. EE.EE l e towards the given objectives.
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G G; e Prediction r— ®o0 %o 2 We test the trained generation model: Can good graphs be generated as search space?
Taph Sp, \.
pice Generation Model (g ) Choose I TogP—SA 5<QED—SA
. e . # Eval CSP # Eval CSP
Surrogate Model (f o) Acquisition function (y) CAGG wlo Pre 43 71.12% 453 6821%
/P Train Eva[uate | 5o/ — Oevaluations 5.0 —— 0 evaluations CAGG w/o GO 272 52.94% 262 45.04%
Costly Evaluation  [€ | 50 evaluations 50 evaluations CAGG 128 N/A 144 N/A
4,01 —— 200 evaluations 4.09 —— 200 evaluations

—— 500 evaluations —— 500 evaluations
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Table S2: An ablation study on the two-phase training strat-
egy in the generation model. CAGG w/o Pre means a vari-
ant without unsupervised VAE pre-training; that is, it does
not execute the lines 1-2 of Algorithm 1 in the main text.
CAGG w/o GO means a variant without goal-oriented train-
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* Representation of graphs: A graph G with d, node types and d,, edge types as consisting of four
tuples (V, E, X, Y), where V is a set of nodes, ES(VXV) is a set of edges, and X € RIVI*(1+dx) anq
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|E|x(1+d ) . . Normalized logP-SA Normalized 5xQED-SA ing while generating search space; that is, it does not execute
Y € RIEX(1+4y) are the attribute matrices of all nodes and edges. the Tine 6 of Algorithm 1 in the main text (i.c., g is always
Shift to the desired direction as the optimization goes on the same as the pre-trained g,.;). # Eval means the num-
ber of evaluations to find the optimum. CSP means the Cost

The attribute matrix of nodes (X) The attribute matrix of edges (Y) Saving Percentage of our framework over other variants.

Both phases contribute to reducing costs.

d, edge types

i d, node types  Acquisition function
N - > v" We use Expected Improvement (EI) function.
. ¢ °
7 Experiments
1+d, * Baselines and Settings

v : e :
whether the node/edge exists (0) or not (1) Representative and state-of-the-art baselines

v Same hardware environment equipped with a four-core Intel i5 processor

* Results on two challenging applications, including MOLECULAR DISCOVERY and NEURAL

* Surrogate model: ARCHITECTURE SEARCH
v Should avoid the hand-crafted kernel

v Should have the ability to approach real expensive-to-evaluate black-box function under a small
number of evaluations

v" Our method finds the comparable or optimal solution
v" Our method reduces the evaluation cost significantly (30%-95%).

Goals Methods # Bval Algorithm cost  Evaluation Total cost CSP
. ] (hours)  cost (hours) Hours  COse (Ibs) Google Cloud Platform
We propose a Bayesian graph neural network as the surrogate. — o s T e e L L
GCPN 3,000 0.2 3,000  3,000.2 411.5 US$1,252.9~US$1614.1  95.69%
loeP—SA JTVAEBO 3,000 22.5 3,000 3,022.5 414.6  US$1,262.2~US$1626.1  95.73%
08 G2G 1,600 2.8 1,600 1602.8 219.8 US$669.3~US$862.3  91.94%
. DGBO 189 0.3 189 189.3 26.0 US$79.1~US$101.8  31.75%
Embedding layer: F(? = (1—Y. ) x 5™ (Ye... ~ e : =
g lay e =(1=Yeo) ¥ty " (Yer), The predictive distribution for a new graph G’: CAGG (ours) 128 12 2§ 1292 177 US$54.0~US$69.6 N/A
HY = (1 - Xi0) x 4™ (Xi1,), Gentrl 3,000 43 3000 3,0043 4121 USSI1.254.6~USS16163 95.16%
! " o GCPN 3,000 0.2 3,000  3,000.2 411.5 US$1,252.9~US§1614.1  95.16%
! (gn) ([p(t—1) pp(t=1) pr(t—1) (' |G"\D)= [ p(z' | G',0)p(0 | D)dO JTVAEBO 1,550 21.5 1,550  1,571.5 215.6 EJS$65693~U§$8455 90.75%
GNN layer: £ = (1= Yeo) x 0™ (FSV, BV, H;7V)), p ’ b P ’ SXQED-SA 55 1,600 28 1600  1602.8 2198 US$669.3~US$8623  90.93%
HY = (1= Xio) x e ((HTY, 30 PO, N DGBO 448 1.0 448 449.0 61.6  USS$187.5~US$241.6  67.64%
cEn(i) Use the Monte Carlo dI'OpOllt technology to deal CAGG (ours) 144 1.3 144 145.3 19.9 US$60.7~US$78.2 N/A
Pooling layer: hg = Concgt(z Hﬁ.(t) t=1,2,....7), with the integral: g Table: L: Compa;ison of cost with molec[.llar discovery methods. # Eyal means the number of eva{uations to ﬁnd t.he optimal
icv (@) %l Z fo (G solution (lower is better). We set the maximum # Eval to 3,000. Algorithm cost represents the algorithm execution time, where
a S = o ’ the Gentrl, JTVAEBO, and CAGG contain the running time in pre-training and designing, the G2G only includes the training
. ~ N((G"),0*(G")) s time, and both the DGBO and GCPN include only running time in searching or designing, because they do not require pre-
Readout layer: a MLP 1S - . . o ’

o2(G") ~= Z( fo,(G") — u(G)2. training. Evaluation cost represents the cost of evaluating molecules, which is calculated based on # Eval and an hour for DFT
g t del: B . h | net K S = calculation per molecular evaluation (Gilmer et al. 2017). COse is the estimated CO5 emission, which is calculated based on
urrogate model. bayesian graph neural nctwor the carbon emission estimation model (Strubell, Ganesh, and McCallum 2019). Google Cloud Platform cost is calculated based

on the price of on-demand c2-standard-8 instances. CSP means the Cost Saving Percentage of the CAGG over other baselines.

. . . Methods Total cost  CIFARIO0  ImageNetl16-120
We test the proposed Bayesian graph neural network in the small sample setting. ResNet N/A 70.86 13.63
RS 205 hours  72.48+1.04 46.04+0.46 Methods Total cost Indoor Slice
REINFORCE 205 hours  72.48+0.31 45.85+0.51 RAND 12 hours 0.156+0.023 0.932+0.044
00 REA 205 hours  73.09£0.25 46.12+0.67 TreeBO 12 hours 0.1684-0.023 0.759+0.079
' 50.3 hours  72.8740.27 46.13+£0.46 NASBOT 12 hours 0.114+£0.009 0.61540.044
-1.0 1 0.0 CAGG (ours)  140.9 hours  73.254+0.42 46.34+0.27 Auto-Keras 12 hours 0.112+0.010 0.870+0.054
207 1, % + } % < i % i i + % f 201.5 hours _ 73.38:£0.16 46.37+£0.24 NASGBO [2hours  0.090+£0.012  0.560+0.046
< D 10 + + 4 hours 0.072+0.003 0.788+4+0.003
ﬂé, 23,01 } l } g i * J } Table 2: Comparison of cost and classification accuracy with  CAGG (ours) 8 hours 0.06640.002 0.625+0.001
= X 2.0+ X Surrogates logP—SA IXQED—SA baselines for cell-based NAS. The total cost includes the al- 12 hours 0.063-+0.001 0.433+0.010
GNN-BLR -1.752:22.283 -3.806-:3.088 gorithm execution time and evaluation costs. The evaluation
~07 3.0 Surrogate of the CAGG -1.0864-0.069 -1.004-0.027 cost per architecture is assigned to half an hour, which is es-  Table 3: Comparison of cost and the test regression mean
-6.0 : : : . . ’ , ‘ timated based on the running time on a personal computer. i i i i-
> |m " 20 > 10 o 20 Table S1: Predictive performance with 20-fold cross valida- The last two columns showgthe test clasgiﬁcation accﬁracy squared error (lower s better) with baselines for mult
ndex Index ) : _ Ll branch NAS. We set the budget to 12 hours and report the
'El((j)n'onthe Surr(ingIlJtIe 1’;8(11891) (Gl(\iTN—BLR) pro;;osed :in 1DGBO 2:?)- Ptli rIl‘ﬂel:t)h-:()ids tr.':tlzn ggg tlllmes t}) el:lrlngatelljandomdeffect; results found by the CAGG under 4, 8, and 12 hours.
i i .. . ui, Yang, and Hu and our surrogate model, mea- e set the budget to ours for aselines and repo
Flgure S1: Visualization of predlctlons of the pl‘OpOSGd sur- sured by lfg)g—likelihood (larger is better). & the results foun%l by the CAGG under various total costsl.)

rogate model on 20 test samples randomly extracted from
the QMO dataset (Ramakrishnan et al. 2014). Black crosses Better predictive performance
denote the groundtruth and blue dots with error bars denote

the predictions with a 95% confidence interval.

Limitations and Future Work

. , * How to relax the limit of the pre-fixed maximum number of nodes when generating graphs
Good predictions and ranking

* How to introduce the cost difference between graphs to further reduce the cost

* Handling other complex generative tasks and multi-objective situation are also promising
35t AAAI conference on Artificial intelligence extensions




