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1. Graphs are ubiquitous.
2. These real-world networks are often associated with a rich set of
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4. It has been studied that the
attributes on graphs are highly

Figure 1: An illustration from a molecule sampling in De-
laney data set (Delaney 2004 ) to an attributed graph (defined
in Section 2). Node feature 1s atomic type, edge feature is
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» Graph convolution (GC) layer:

~—1/2A"r5—1/2H(1)VVr(l+1))

r

> Pooling layer: H®°°) = g(sum,,,, (softmax(HOW ®PooLYY)

> Prior layer: H(€°™ = Concat(H
» Bayesian linear regressor (BLR)
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correlated to topological
structures, and can benefit

chemical bond type, and global attributes contain minimum
degree, molecular weight, # h-bond donors, # rings, # rotat-
able bonds, and polar surface area.

Optimizing Surrogate Architecture by Transfer

In the real world, we often have very limited observations for the task at

hand due to the high cost of function evaluation. To address this issue, in the
paper we suggest employing the idea of transfer learning, I1.e., to optimize
surrogate architecture based on the available data from other sources.

various network analysis tasks such as network embedding.

Questions To Be Explored

In this work, we propose to study 1) whether the attributes on graphs can Paramelers Ranges Optimal
: S : . # GC layers {1,2,3,4,5} 5
benefit the_ task of graph _structure_ optimization; and_ 2) how to S FC lavers 2348 X
comprehensively explore available attributes to address this task more # units of GC [10. 100] 48
.. ; # units of pooling [10, 100] 50
efficiently and effectively. # units of FC [10, 100] 45
o(.) of GC {ReLU, tanH } tanH
- = - - L - .) of pooli Identity, ReLU, tanH Identit
Limitations of Current Methods and Difficulties U s rivind ot Sl
_ _ Learning rate [le-4, le-1] le-4
» Model-free methods usually require a large number of evaluations to Dropout [0. 1] 0.0
) ) _ ) ] _ h _ ] ] Penalty coefficient [1e-5, le-1] le-5
maintain population diversity in finding an optimal solution.
Table 1: The optimal surrogate architecture.

» EXisting vectorial Bayesian optimization (BO) methods cannot be directly
applied to attributed graphs.

» Existing BO methods for, implicitly or explicitly, operating on graphs
either are exclusively designed for the specific tasks such as neural
architecture search, which are difficult to extend to other domains, or fail
to consider all related attributes.

» The aforementioned model-based methods are mainly based on GPs
(Gaussian processes), which is limited to its insufferable cubic scaling.

Experiments

We rigorously evaluate the proposed methods by answering three questions. 1)
Can the available features from attributed graphs benefit optimization? 2)
How effective and efficient are the proposed methods compared with the
start-of-the-art on real-world problems? 3) Can they be applied to various
domains? Specifically, we apply the proposed methods to an artificial non-
linear function and two challenging real-world problems, including molecular
discovery and urban road network design.

» Results on molecular discovery :

Proposed method: Deep Graph Bayesian Optimization (DGBQO)
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The iterative process of DGBO is as follows:
1. Train the deep surrogate model with training set;
2. Predict the properties of all candidates while capturing uncertainty via
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4. Evaluate the black-box system to obtain the measure of the potential
graph, until reaching a predefined termination condition.

» Results on urban road network design:
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The Proposed Deep Surrogate Model
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Figure 2: The overview architecture of the surrogate model
in the DGBO. Its input 1s an attributed graph (e.g., a molecu-
lar graph) and output is a continuous measure (e.g., a desired
property). F, denotes the features of node v, F. denotes the
features of edge e and F denotes global attributes.
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Conclusion

In this work, we propose a novel scalable global optimization method on
attributed graphs, and apply It to solve various problems, including molecular
discovery and urban road network design. The results show that the DGBO
significantly outperforms the state-of-the-art methods in terms of both
accuracy and scalability.
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