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Fig. S1: The architecture of the Temporal Gated Network
(TGN)

I. PROOF OF LEMMA 1

Lemma 1. 1© f(∅) = 0; 2© f(A) is monotonically non-
decreasing; 3© f(A) is submodular.

Proof. 1© A = ∅ means that no pair of worker and task has
been selected. Thus, f(∅) = 0.

2© Without loss of generality, we define βg as the se-
lected pair of the worker w(g) and task sp(g) at step g, i.e.,
βg = (w(g), sp(g)). Thus, we have Ag = {β1, β2, · · · , βg},
and Ag+1 = {β1, β2, · · · , βg+1}; that is, Ag ⊆ Ag+1. Now
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we derive the difference between f(Ag+1) and f(Ag+1) as

f(Ag+1)− f(Ag)

=
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−
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=
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× (1− (1− P (w(g+1), sp(g+1))))

=
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(1−P (wi, spj)1(wi, spj)∈Ag)P (w
(g+1), sp(g+1)).

Since P (wi, spj) represents the probability of wi perform-
ing spj , we know that 0 ≤ P (wi, spj) ≤ 1 always holds.
We thus have f(Ag+1) − f(Ag) ≥ 0. That is, f(A) is
monotonically non-decreasing.

3© Without loss of generality, we define Ag ⊆ Aq ⊆ ALL
and (w′, sp′) ∈ (ALL\Aq), where ALL means the set
including all pairs of worker and task. Similarly, we derive

[f(Ag ∪ {(w′, sp′)})−f(Ag)]−[f(Aq ∪ {(w′, sp′)})−f(Aq)]

= [
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Here, we set Aq\g = Aq\Ag and continue to derive as

[f(Ag ∪ {(w′, sp′)})−f(Ag)]−[f(Aq ∪ {(w′, sp′)})−f(Aq)]

=

|SP |∑
j=1

P (w′, sp′)
|W |∏
i=1

(1− P (wi, spj)1((wi, spj) ∈ Ag))

× (1−
|W |∏
i=1

(1− P (wi, spj))1((wi, spj) ∈ Aq\g)).

Since P (., .) represents the probability, we can get that 0 ≤
P (., .) ≤ 1. Thus, we can obtain [f(Ag∪{(w′, sp′)})−f(Ag)]−
[f(Aq∪{(w′, sp′)})−f(Aq)] ≥ 0; that is, f(Ag∪{(w′, sp′)})−
f(Ag) ≥ f(Aq ∪ {(w′, sp′)})− f(Aq), which means f(A) is
submodular.

II. EFFECT OF PARAMETERS IN
LOCATION-AND-PREFERENCE JOINT PREDICTION MODEL

To evaluate the effects of parameters on the prediction, we
investigate four parameters, including hidden state size, batch
size, α, and L2 regularization coefficient. We show the results
in Table S1, Table S2, Table S3, and Table S4.

In Table S1, with the changing of hidden state size, the
accuracy of location prediction and preference prediction is
relatively stable on the three datasets. The optimal value of
hidden state size is 520, which is marked in bold. In most
cases, the value of 520 brings the highest accuracy on both
location and preference prediction. Next, we test the batch
size on 16, 32, 64, and 128. The same as hidden state size,
in Table S2, with the increase of batch size, the accuracy
of location prediction and preference prediction is relatively
stable on the three datasets. The best value is 32, and we
select it as the default value of batch size. Then, we focus
on selecting a suitable α, which is used to balance the
location and preference prediction in the loss function. In Table
S3, both the accuracy of location prediction and preference
prediction gently increases with the growth of α until α = 1,
then, declined slightly. The effect of α on the accuracy of
prediction is also not obvious. In Table S4, we change the L2
regularization coefficient from 1e− 3 to 1e− 6. The first and
second best results are boldfaced and underlined respectively.
We find that the accuracy of location prediction and preference
prediction is relatively stable on the three datasets. When L2
regularization coefficient is 1e − 5, we obtain the highest
location and preference prediction accuracy on Geolife and
Foursquare-TKY datasets, and the second highest location and
preference prediction accuracy on Foursquare-NYC dataset.

Therefore, the effects of parameters on the JPM are inap-
parent, i.e., the JPM is not sensitive to the parameters.

III. COMPARED METHODS AND EXPERIMENTAL SETUP

For prediction, since JPM can perform location and prefer-
ence prediction simultaneously, we compare our model with
two types of baselines. The first type only predicts locations,
and the second type only infers worker preference category.
For task assignment, MAJA is compared with other approaches
aiming at prediction-based task assignment.

Location prediction only

• LSTM [1]: This is a variant of the RNN model which is
effective in handling sequential data.

• ST-RNN [2]: This is an RNN-based model that incorpo-
rates spatial and temporal context into spatial-temporal
transition matrices.

• DeepMove [3]: This method learns periodicity from the
historical trajectory with the attention mechanism and
learns sequentiality from the current trajectory using an
RNN model.

• STGN [4]: This models uses time and distance gates to
capture temporal and spatial intervals.

• STGCN [4]: This is a variant of STGN to reduce com-
putation.

• LSTPM [5]: This approach focuses on the influence of
distance on location prediction from both history and
current trajectories.

• JPM-w/o-Pref: This method is a variant of our JPM,
which does not input preference and only predict location
probability distribution.

Preference inference only
• TD [6]: This approach is a tensor decomposition approach

that fills the missing entries by decomposing the tensor
constructed by recent trajectories.

• HCTD [6]: This method is a tensor decomposition ap-
proach that fills the missing entries by decomposing the
tensor constructed by all trajectories and other auxiliary
information.

Task assignment
• g-MUS-D [7]: This approach employs a semi-Markov

model to predict location probability distribution within
the sensing period, and then assign tasks to workers.

• OPP-Greedy [8]: This method predicts the probability of
each worker connecting to different task location at least
once during the sensing period, and then allocates tasks
to workers.

• LTA: This method is a variant of our MAJA, which only
predicts locations but do not predicts preference, and then
assigns tasks to workers.

Since the baselines do not consider the preference of workers,
to compare with our MAJA, we add a preference category
statement for every worker. We deem each worker’s preference
as the category of the last task completed by the worker.

All experiments are performed on the same hardware en-
vironment, equipped with an Intel(R) Xeon(R) CPU E5-2680
v4 @ 2.40GHz, 128 GB RAM, and GeForce RTX 3090 GPU.

IV. ABLATION TESTS OF LOCATION-AND-PREFERENCE
JOINT PREDICTION MODEL

To verify the contribution of each part (network) in JPM
to the results, we construct an ablation experiment. Specifi-
cally, we implement the following three simplified versions to
compare their performance with our model.
• JPM w/o Long: This version removes the long-term pre-

diction module of JPM and engages the TGN network and
geo-dilated LSTM in the short-term prediction module.

• JPM w/o TGN: This version removes the TGN of the
short-term prediction module in JPM and engages the
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TABLE S1: The effect of hidden state size on different datasets.

acc location@5 acc preference@5
Hidden state size 220 320 420 520 620 220 320 420 520 620

Geolife 0.9121 0.9155 0.9174 0.9208 0.9171 0.9265 0.9249 0.9292 0.9339 0.9223
Foursquare-NYC 0.6273 0.6289 0.6540 0.6517 0.6459 0.7633 0.7776 0.7944 0.7998 0.7861
Foursquare-TKY 0.6095 0.6194 0.6169 0.6219 0.6191 0.8283 0.8343 0.8362 0.8397 0.8395

TABLE S2: The effect of batch size on different datasets.

acc location@5 acc preference@5
Batch size 16 32 64 128 16 32 64 128

Geolife 0.9087 0.9208 0.9176 0.9145 0.9260 0.9339 0.9323 0.9218
Foursquare-NYC 0.6460 0.6517 0.6394 0.6387 0.7829 0.7998 0.7641 0.7795
Foursquare-TKY 0.6143 0.6219 0.6174 0.6199 0.8379 0.8397 0.8378 0.8323

TABLE S3: The effect of α on different datasets.

acc location@5 acc preference@5
α 0.4 0.7 1.0 1.3 0.4 0.7 1.0 1.3

Geolife 0.9156 0.9166 0.9208 0.9140 0.9229 0.9224 0.9339 0.9292
Foursquare-NYC 0.6264 0.6497 0.6517 0.6177 0.7663 0.7997 0.7998 0.7811
Foursquare-TKY 0.6189 0.6194 0.6219 0.6191 0.8334 0.8383 0.8397 0.8304

TABLE S4: The effect of L2 regularization coefficient on different datasets.

acc location@5 acc preference@5
L2 1e-3 1e-4 1e-5 1e-6 1e-3 1e-4 1e-5 1e-6

Geolife 0.9123 0.9113 0.9208 0.9203 0.9328 0.9275 0.9339 0.9302
Foursquare-NYC 0.6528 0.6475 0.6517 0.6373 0.7954 0.8077 0.7998 0.7661
Foursquare-TKY 0.4798 0.6082 0.6219 0.6170 0.8293 0.8368 0.8397 0.8377

TABLE S5: Performance of different JPM variants on Foursquare-NYC dataset.

acc location@k acc preference@k
k=1 k=5 k=10 k=1 k=5 k=10

LSTPM 0.3372 0.5924 0.6953 - - -
HCTD - - - 0.3140 0.7348 0.8704
JPM w/o Long 0.3178 0.5325 0.6079 0.2929 0.7444 0.9796
JPM w/o TGN 0.3223 0.5867 0.6794 0.2987 0.7553 0.9801
JPM w/o Geo-dilated LSTM 0.3503 0.6382 0.7274 0.3059 0.7803 0.9833
JPM 0.3838 0.6517 0.7448 0.3263 0.7998 0.9919

long-term prediction module and geo-dilated LSTM in
short-term prediction.

• JPM w/o geo-dilated LSTM: This version removes the
geo-dilated LSTM of the short-term prediction module
in JPM and engages the long-term prediction module and
TGN in short-term prediction.

As network sensitivity experiments have obtained similar
results on all datasets, we report the results on the Foursquare-
NYC dataset in Table S5. For ease of comparison, we also put
the results of the best baseline methods in the table. Through
the ablation tests, we can observe that:

• Although JPM w/o Long is less competitive than other
degraded versions of JPM, it can still get better prediction
performance than many baselines, such as the LSTM, ST-
RNN, STGN, and STGCN for location prediction, and
TD for preference prediction (please see the Table IV
and Table V in the paper). Hence the effectiveness of JPM
w/o Long comes from our short-term prediction module,
which consists of TGN and geo-dilated LSTM.

• The accuracy of the JPM w/o TGN is better than JPM
w/o Long, mainly because the JPM w/o TGN captures the
periodicity and distance influence of worker mobility by
the long-term prediction module and the spatial relations
by the geo-dilated LSTM in the short-term prediction
module.

• JPM w/o geo-dilated LSTM outperforms other degraded
versions of JPM, mainly because it can capture the long-
term dependence of user mobility. Moreover, compared
with the JPM w/o TGN, the added TGN part in the short-
term prediction module could integrate the influence
of the time interval of the current trajectory on joint
prediction.

• The complete model JPM achieves the best performance,
showing that the three parts have positive impacts on the
location-and-preference joint prediction.
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(a) Avg # completed tasks, 
Average task sensing period (Geolife)

(b) Avg # completed tasks, 
Average task sensing period (Foursquare-NYC)

(c) Avg # completed tasks per worker, 
Average task sensing period (Geolife)

(d) Avg # completed tasks per worker, Average 
task sensing period (Foursquare-NYC)
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(a) Avg # completed tasks, 
Average worker reachable distance

(Geolife)

(b) Avg # completed tasks, 
Average worker reachable distance

(Foursquare-NYC)

(c) Avg # completed tasks per worker, 
Average worker reachable distance

(Geolife)

(d) Avg # completed tasks per worker, 
Average worker reachable distance

(Foursquare-NYC)

Fig. S3: Performance of task assignment: Effect of worker
reachable distance. The two metrics have a growing tendency
with the increasing worker reachable distance. The reason is
similar to the effect of tasks sensing period, i.e., the greater
the reachable distance of the worker, the more opportunities

to assign tasks.

(a) Avg # completed tasks, 
Average task requirement (Geolife)

(b) Avg # completed tasks, 
Average task requirement (Foursquare-NYC)

(c) Avg # completed tasks per worker, 
Average task requirement (Geolife)

(d) Avg # completed tasks per worker, Average 
task requirement (Foursquare-NYC)

Fig. S4: Performance of task assignment: Effect of task
requirement. The two metrics significantly reduce when the

number of task requirements increases, especially on the
Foursquare-NYC and Foursquare-TKY datasets. Because the

number of workers who satisfy the spatial-temporal and
preference category constraints is limited, a task requires

more workers to perform it.
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(a) Avg # completed tasks, 
Average worker capacity (Geolife)

(b) Avg # completed tasks, 
Average worker capacity (Foursquare-NYC)

(c) Avg # completed tasks per worker, 
Average worker capacity (Geolife)

(d) Avg # completed tasks per worker, Average 
worker capacity (Foursquare-NYC)

Fig. S5: Performance of task assignment: Effect of worker
capacity. The two metrics dramatically rise with the number
of worker capacity increasing. Since the more capable the

worker is, the more chance that the SC server has to assign
the workers more tasks.


