
Supplementary Document for
Cost-aware Graph Generation: A Deep Bayesian Optimization Approach

Jiaxu Cui,1,2 Bo Yang,1,2∗ Bingyi Sun,1,2,4 Jiming Liu 3

1College of Computer Science and Technology, Jilin University, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, China

3Department of Computer Science, Hong Kong Baptist University, Hong Kong
4National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, China

jxcui16@mails.jlu.edu.cn, ybo@jlu.edu.cn, bysun15@mails.jlu.edu.cn, jiming@comp.hkbu.edu.hk

S1 Constraints on Neural Networks
We deal with two types of neural architectures, i.e., cell-
based architecture and multi-branch architecture. More de-
tailed categories in neural architecture search (NAS) can
be found in (Elsken, Metzen, and Hutter 2019). Cell-based
NAS is motivated by hand-crafted architectures consisting
of repeated building blocks. It focuses on searching this
block, or dubbed cell, instead of the whole architecture.
Multi-branch NAS focuses on searching a whole architec-
ture, which allows to build more complex structures.

For the cell-based search, since the NASBench201 bench-
mark (Dong and Yang 2020) used in our experiments pro-
vides evaluation results for all possible cell architectures
and there is a type describing that an edge is not connected
(i.e., zeroize), we just keep the existence of all nodes and
edges in the generated cells deterministically; that is, the 0-
th columns of X̃ and Ỹ are forced to be 0.

For more complex multi-branch architectures, we filter
the generated probability template G̃ to leave only the upper
triangular matrix as the probabilistic adjacency matrix Ã.
We, then, deterministically define the first node as the input
layer and the last node as the output layer. By doing these,
we ensure that the generated graphs are directed acyclic and
all nodes with large indices can receive their inputs from
nodes with small indices.

To construct valid multi-branch neural architectures, we
introduce two constraints as follows: 1) there is at least one
path from the input node to any existing node; and 2) there is
at least one path from any existing node to the output node.
These two constraints can be formulated as:

c1 := −
∑
i∈Ṽ

p(i)C0,i + (1− p(i)) ·
∑
j∈Ṽ

Cj,i, (1)

c2 := −
∑
i∈Ṽ

p(i)Ci,N−1 + (1− p(i)) ·
∑
j∈Ṽ

Ci,j , (2)

where p(i) = 1− X̃i,0, the path matrix C can be calculated
based on Ã, and subscripts 0 and N − 1 indicate the input
and output nodes respectively.

∗Corresponding author.

S2 Detailed Experimental Settings
S2.1 Baselines
For molecular discovery, the latest representative baselines
compared to the Cost-Aware Graph Generation (CAGG) are
listed as follows:

• GCPN (You et al. 2018) is based on the deep reinforce-
ment learning (RL) to generate graphs for goals.

• Gentrl (Zhavoronkov et al. 2019) uses the RL to guide a
pre-trained variational autoencoder (VAE) with a learned
prior to the desired direction.

• G2G (Jin et al. 2019) is an end-to-end learning method,
which can map an input graph into a better graph through
performing adversarial regularization on a pre-trained
VAE.

• JTVAEBO (Jin, Barzilay, and Jaakkola 2018) uses a BO
with a sparse Gaussian process to search an optimal rep-
resentation over the latent space encoded by a pre-trained
VAE, and decodes the searched encoding into the corre-
sponding graphs.

• DGBO (Cui, Yang, and Hu 2019) is a search algorithm
from a given fixed search space, which combines graph
neural network and Bayesian linear regressor as a surro-
gate model.

There are various methods for cell-based NAS, e.g., ran-
dom search (Bergstra and Bengio 2012; Li and Talwalkar
2019), evolutionary search (Real et al. 2019), RL algorithms
(Williams 1992; Pham et al. 2018), differentiable algorithms
(Liu, Simonyan, and Yang 2019), and hyper-parameter op-
timization (Falkner, Klein, and Hutter 2018). It has been
observed in (Dong and Yang 2020) that methods without
parameter sharing, like RS (Bergstra and Bengio 2012),
REA (Real et al. 2019), REINFORCE (Williams 1992), and
BOHB (Falkner, Klein, and Hutter 2018), outperform others
on NASBench201 benchmark. We, thus, choose the top-3
methods reported in (Dong and Yang 2020) in terms of the
accuracy of searched architectures under a given budget, as
the baselines.

• RS (Bergstra and Bengio 2012) is a random search al-
gorithm, which is to randomly select cells until the total
evaluation cost reaches the total budget.

• REA (Real et al. 2019) is a regularized evolution search
method for image classifier architecture search.

• REINFORCE (Williams 1992) is a commonly used base-
line RL method in NAS. Its specific setting is based on
(Ying et al. 2019; Liu, Simonyan, and Yang 2019).

• ResNet (He et al. 2016) is a classical hand-crafted deep
residual architecture, as a baseline for comparison.

Representative baselines for multi-branch NAS on regres-
sion tasks are listed as follows:
• RAND is to select architecture at each iteration randomly,

as described in (Kandasamy et al. 2018).
• TreeBO (Jenatton et al. 2017) is a BO method that only

searches over feedforward structures.
• NASBOT (Kandasamy et al. 2018) is a Gaussian process-

based BO with an optimal-transport-distance kernel.
• Auto-Keras (Jin, Song, and Hu 2019) is a tool for auto-

matically designing architecture using network morphism
and a Gaussian process-based BO with an edit-distance
kernel.

• NASGBO (Ma, Cui, and Yang 2019) is built on (Cui,
Yang, and Hu 2019) and combines an evolutionary algo-
rithm to optimize acquisition function.

S2.2 Experimental Setup
For the surrogate model, we model the trainable neural net-
works ψ(em)

E , ψ(em)
V , ψ(gn)

E , ψ(gn)
V with four separate single-

layer fully connected nets with 57 neurons and pass the mes-
sages 5 rounds to learn features, i.e., T is set to 5. The train-
able MLP is set to [55,55,55,55,55] and the activation func-
tion used in our surrogate is ReLU. Following (Ma, Chen,
and Xiao 2018), the generation model is a 4-layer decon-
volutional neural net (64, 32, 32, 1 channels with filter size
3×3). The dimension of input of the generation model r is
set to 82. We randomly sample 1,000 graphs to pre-train the
generation model unsupervised.

For molecular discovery, we set the number of initialized
graphs (M) to 50 and the maximum number of nodes (N)
to 9. Since the heavy atom types in the QM9 dataset (Ra-
makrishnan et al. 2014) used in our experiments includes
carbon (C), oxygen (O), nitrogen (N) and fluorine (F), and
the bond types are single, double and triple, we set the num-
ber of node types (dx) and the number of edge types (dy) to
4 and 3, respectively. Following (Jin, Barzilay, and Jaakkola
2018; Cui, Yang, and Hu 2019), we use RDKit tool1 to cal-
culate molecular properties.

For cell-based NAS, we set the number of initialized
graphs (M) to 10 and the maximum number of nodes (N)
to 4. Following the common cell-based modeling strategy in
(Dong and Yang 2020), we represent the node as the sum
of the feature maps and each edge as a specific operation.
Since there are no other options on the nodes, we set the
number of node types (dx) to 1. Following (Dong and Yang
2020), the operations on edges include the zeroize, skip-
connect, 1×1 conv, 3×3 conv, and 3×3 avg pool. Thus, we

1http://www.rdkit.org

set the number of edge types (dy) to 5. Moreover, we use
the evaluated records after 200 training epochs on two com-
mon image classification datasets, including CIFAR100 and
ImageNet16-120, in the NASBench201 benchmark (Dong
and Yang 2020). More specific setting on training and test-
ing can be found in (Dong and Yang 2020).

For multi-branch NAS, we set M and N to 10 and 20, re-
spectively. Following (Kandasamy et al. 2018), we represent
each node as a layer associated with the specific operation
and the edge as the data flow direction. Since the edge is just
a data flow, we set dy to 1. For the layers, the number of
hidden neurons is selected from a set of {8, 16, 32, 64, 128,
256, 512, 1024} and the nonlinear function is selected from
a set of {relu, crelu, leaky-relu, softplus, elu, logistic, tanh}.
Thus, nodes have a total of 59 types added with the input
layer (ip), output layer (op) and linear layer; that is, dx is set
to 59.

The training interval (K), the number of samples (S), and
the number of samples (L) in predictions while training the
generation model are set to 20, 10, and 1 in our experiments.
All coefficients λ are set to 0.1. The parameter setting of
each comparison method is consistent with their respective
paper. Each algorithm runs several times on the same hard-
ware environment equipped with a four-core Intel i5 proces-
sor. Random seeds are selected from a set of {1,2,3,4,5}.

S3 Validations of the Proposed Surrogate
Model and Generation Model

S3.1 Validation of the Surrogate Model
Since the evaluation cost is high, the evaluated graphs are
very scarce. Herein, we test the ability of our surrogate
model to approach real evaluation function f under a small
number of evaluations. We randomly extract 40 molecules
from QM9 dataset (Ramakrishnan et al. 2014) and make
20 20-20 train-test splits. Fig. S1 visualizes the predictions
of a split. We see that our surrogate model has good pre-

Figure S1: Visualization of predictions of the proposed sur-
rogate model on 20 test samples randomly extracted from
the QM9 dataset (Ramakrishnan et al. 2014). Black crosses
denote the groundtruth and blue dots with error bars denote
the predictions with a 95% confidence interval.

diction ability even though it is only trained on 20 sam-
ples. It can learn a near-correct regression trend about the
evaluation value by which good samples and bad samples
can be properly ranked without needing to accurately es-
timate their specific evaluation values. Good ranking is al-
ready enough for candidate selection in Bayesian optimiza-

Surrogates logP−SA 5×QED−SA
GNN-BLR -1.752±2.283 -3.806±3.088
Surrogate of the CAGG -1.086±0.069 -1.004±0.027

Table S1: Predictive performance with 20-fold cross valida-
tion of the surrogate model (GNN-BLR) proposed in DGBO
(Cui, Yang, and Hu 2019) and our surrogate model, mea-
sured by log-likelihood (larger is better).

tion. On the other hand, the predictive confidence interval
contains almost all groundtruth. Moreover, compared with
the surrogate model (GNN-BLR) proposed in DGBO (Cui,
Yang, and Hu 2019), our surrogate model has better predic-
tion performance (see Table S1). The log-likelihood metric
characterizes the probability of the groundtruth appearing in
the predictive interval. That is, our surrogate model is robust
and can adequately reflect uncertainty, which is the benefit
of considering the uncertainty of all parameters.

S3.2 Validation of the Generation Model
To test the ability of our generation model to produce the de-
sired graphs, we train it under the different number of eval-
uations and collect the average properties of 1K molecules
generated by these trained models. We carry out this process
five times, and then get the statistic of these average values,
as shown in the top of Fig. S2. We see that as the number

Figure S2: Validation results of our generation model. Top:
the error bar statistic of the average properties of molecules
generated by our generation model. Bottom: distributions of
properties of molecules generated by our generation model
under various evaluation times in a single trial.

of evaluations increases, our generation model can produce
graphs with better properties. In the bottom of Fig. S2, we
also visualize the distributions of properties of molecules
generated by our generation model under the different num-
ber of evaluations in a single trial. We clearly see that our
training strategy can make the generation model shift to the
desired direction with the increase of evaluations. In other
words, it is more likely that the generation model trained

by our training strategy can produce graphs with desirable
properties than that trained unsupervised (see case with 0
evaluations), to produce desirable search space to avoid un-
necessary evaluations. Thus, with the design going on, we
can also obtain a generation mechanism for optimal graphs
(see case with 500 evaluations). Moreover, the validity of the
produced molecules can reach 99.3%±0.5% in convergence
(∼ 500 evaluations).

Methods logP−SA 5×QED−SA
Eval CSP # Eval CSP

CAGG w/o Pre 443 71.12% 453 68.21%
CAGG w/o GO 272 52.94% 262 45.04%
CAGG 128 N/A 144 N/A

Table S2: An ablation study on the two-phase training strat-
egy in the generation model. CAGG w/o Pre means a vari-
ant without unsupervised VAE pre-training; that is, it does
not execute the lines 1-2 of Algorithm 1 in the main text.
CAGG w/o GO means a variant without goal-oriented train-
ing while generating search space; that is, it does not execute
the line 6 of Algorithm 1 in the main text (i.e., gφ is always
the same as the pre-trained gori). # Eval means the num-
ber of evaluations to find the optimum. CSP means the Cost
Saving Percentage of our framework over other variants.

As the proposed training strategy of the generation model
includes two phases, i.e., pre-training and goal-oriented
training, we test the contribution of each phase to the re-
sults in a fine-grained way. We apply two variants of the pro-
posed CAGG to discover molecules, i.e., the CAGG w/o Pre
and CAGG w/o GO. From Table S2, we clearly see that both
phases contribute to reducing costs, which demonstrates that
our two-phase training strategy is technically sound.

Figure S3: We collect all evaluated molecules from multiple
runs and display a violin plot of molecules evaluated by each
method in optimizing. DATA is to count the properties of all
the molecules in the QM9 dataset. For the G2G, we gener-
ate 8K molecules from the trained G2G to compare, because
of its supervision nature. We clearly see that the CAGG can
produce molecules with better properties than other base-
lines. Note that we do not include the DGBO here, mainly
because it cannot produce any new molecules beyond the
predetermined search space.

References
Bergstra, J.; and Bengio, Y. 2012. Random Search for Hyper-
Parameter Optimization. Journal of Machine Learning Research
13: 281–305.

Figure S4: Convergence comparison of methods to design
the optimal cells on CIFAR100 (left) and ImageNet16-120
(right). All methods ran five times to eliminate random ef-
fects. Solid lines represent mean values. We see that the
CAGG shows the fastest convergence on both datasets.

Figure S5: A violin plot of cells evaluated by each method
in designing the optimal cells on CIFAR100 (left) and
ImageNet16-120 (right). Compared with baselines, the
CAGG can produce the cell architectures with higher ver-
ification accuracy.

0

1conv-3x3

2conv-1x1 3
skip-connect

conv-3x3
conv-3x3

conv-1x1

0

1conv-3x3

2conv-3x3 3
skip-connect

conv-3x3
conv-3x3

conv-3x3

Figure S6: Optimal cells found by the CAGG under the
similar total cost (i.e., 201.5 hours) to other methods. For
CIFAR100, the test accuracy is 73.50%±0.27% (top). For
ImageNet16-120, the test accuracy is 46.57%±0.31% (bot-
tom). The global optimal average test accuracy on these
two datasets in NASBench201 (Dong and Yang 2020) are
73.51% and 47.31%, respectively. Note that the evaluation
cost of finding these comparable solutions via the CAGG is
only 2.56% of all the 15,625 different cells in NASBench201
benchmark.

Cui, J.; Yang, B.; and Hu, X. 2019. Deep Bayesian optimization on
attributed graphs. In AAAI.

Dong, X.; and Yang, Y. 2020. NAS-Bench-201: Extending the
Scope of Reproducible Neural Architecture Search. In ICLR.

Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural Architec-

ture Search: A Survey. Journal of Machine Learning Research 20:
55:1–55:21.

Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Robust and
Efficient Hyperparameter Optimization at Scale. In ICML, 1436–
1445.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual Learn-
ing for Image Recognition. In CVPR, 770–778.

Jenatton, R.; Archambeau, C.; Gonzalez, J.; and Seeger, M. 2017.
Bayesian Optimization with Tree-Structured Dependencies. In
ICML.

Jin, H.; Song, Q.; and Hu, X. 2019. Auto-Keras: An Efficient Neu-
ral Architecture Search System. In KDD.

Jin, W.; Barzilay, R.; and Jaakkola, T. 2018. Junction Tree Varia-
tional Autoencoder for Molecular Graph Generation. In ICML.

Jin, W.; Yang, K.; Barzilay, R.; and Jaakkola, T. 2019. Learning
Multimodal Graph-to-Graph Translation for Molecular Optimiza-
tion. In ICLR.

Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.; and
Xing, E. P. 2018. Neural Architecture Search with Bayesian Opti-
misation and Optimal Transport. In NeurIPS.

Li, L.; and Talwalkar, A. 2019. Random Search and Reproducibil-
ity for Neural Architecture Search. In UAI, 129.

Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differentiable
Architecture Search. In ICLR.

Ma, L.; Cui, J.; and Yang, B. 2019. Deep Neural Architecture
Search with Deep Graph Bayesian Optimization. In WI.

Ma, T.; Chen, J.; and Xiao, C. 2018. Constrained Generation of
Semantically Valid Graphs via Regularizing Variational Autoen-
coders. In NeurIPS.

Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and Dean, J. 2018. Ef-
ficient Neural Architecture Search via Parameter Sharing. In ICML,
4095–4104.

Ramakrishnan, R.; Dral, P. O.; Rupp, M.; and von Lilienfeld, O. A.
2014. Quantum chemistry structures and properties of 134 kilo
molecules. Scientific Data 1: 140022.

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Regular-
ized Evolution for Image Classifier Architecture Search. In AAAI,
4780–4789.

Williams, R. J. 1992. Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning. Machine Learn-
ing 8: 229–256.

Ying, C.; Klein, A.; Christiansen, E.; Real, E.; Murphy, K.; and
Hutter, F. 2019. NAS-Bench-101: Towards Reproducible Neural
Architecture Search. In ICML, 7105–7114.

You, J.; Liu, B.; Ying, R.; Pande, V.; and Leskovec, J. 2018. Graph
Convolutional Policy Network for Goal-Directed Molecular Graph
Generation. In NeurIPS.

Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Al-
adinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy,
D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.;
Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy,
B. A.; Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; and
Aspuru-Guzik, A. 2019. Deep learning enables rapid identification
of potent DDR1 kinase inhibitors. Nature Biotechnology 37(9):
1038–1040.

#0 ip,

#1 crelu, 512,

#2 crelu, 1024,#6 crelu, 8,

#7 tanh, 8,

#3 crelu, 1024,

#4 crelu, 8,

#5 relu, 8,

#11 logistic, 128,

#17 logistic, 256,

#8 logistic, 16,

#9 softplus, 8,

#12 logistic, 512,

#16 tanh, 128,

#18 linear,

#19 op,

#15 leaky-relu, 256,

#13 linear, #14 relu, 128,

#10 tanh, 256,

#0 ip,

#1 crelu, 256, #2 relu, 128,

#3 logistic, 16,#5 logistic, 64,

#7 tanh, 32,

#19 op,

#4 logistic, 8,

#14 leaky-relu, 64,

#15 relu, 128,

#8 relu, 8,

#9 tanh, 512,

#16 logistic, 256,

#17 linear,

#18 linear,

#6 elu, 512,

#12 tanh, 32,#11 leaky-relu, 16,

#10 logistic, 8,

#13 relu, 8,

Figure S7: Optimal whole architectures found by the CAGG under 12 hours on Indoor dataset (top) and Slice dataset (bottom).

